Many-body effects in twisted bilayer graphene at low twist angles
نویسندگان
چکیده
منابع مشابه
Phonons in twisted bilayer graphene
Alexandr I. Cocemasov,1 Denis L. Nika,1,2,* and Alexander A. Balandin2,3,† 1E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Theoretical Physics, Moldova State University, Chisinau, MD-2009, Republic of Moldova 2Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California ...
متن کاملObservation of low energy Raman modes in twisted bilayer graphene.
Two new Raman modes below 100 cm(-1) are observed in twisted bilayer graphene grown by chemical vapor deposition. The two modes are observed in a small range of twisting angle at which the intensity of the G Raman peak is strongly enhanced, indicating that these low energy modes and the G Raman mode share the same resonance enhancement mechanism, as a function of twisting angle. The ~94 cm(-1) ...
متن کاملSuperlensing with twisted bilayer graphene
The charge susceptibility of twisted bilayer graphene is investigated in the Dirac cone, respectively, randomphase approximation. For small enough twist angles θ ≲ 2° , we find genuine interband plasmons, i.e., collective excitonic modes that exist in the undoped material with an almost constant energy dispersion. In this regime, the loss function can be described as a Fano resonance, and we ar...
متن کاملQuantum Hall effect in twisted bilayer graphene.
We address the quantum Hall behavior in twisted bilayer graphene transferred from the C face of SiC. The measured Hall conductivity exhibits the same plateau values as for a commensurate Bernal bilayer. This implies that the eightfold degeneracy of the zero energy mode is topologically protected despite rotational disorder as recently predicted. In addition, an anomaly appears. The densities at...
متن کاملMany-body exchange-correlation effects in graphene
We calculate, within the leading-order dynamical-screening approximation, the electron self-energy and spectral function at zero temperature for extrinsic (or gated/doped) graphene. We also calculate hot carrier inelastic scattering due to electron–electron interactions in graphene. We obtain the inelastic quasiparticle lifetimes and associated mean free paths from the calculated self-energy. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2019
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.100.045111